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Abstract
We present a neat formula for the transport cross section for spherically
symmetric potentials. The formula is the analogy of a well-known expression
for the total cross section in terms of phase shifts. For a hard sphere we
calculate the transport cross section explicitly, which shows that for all positive
wavenumbers k, most scattering is in the forward direction.

PACS number: 03.65.Nk

Dedicated to R A Minlos on the occasion of his 75th birthday

1. Definition of the transport cross section

First, we define the classical resistance of a body. Let a heavy body be given as a subset
� ⊂ R

3 and consider a flow of particles with mass m in the positive direction of the z-axis
(denote the unit vector as e = (0, 0, 1) with velocity v = ve). The particles move freely, then
undergo several elastic collisions with � and finally move freely again with velocity ve+(x)

where x ∈ R
2 marks their initial coordinates in v⊥, the plane perpendicular to v. The classical

(vector-valued) resistance Rcl is defined through the formula

Rcl(�) =
∫

v⊥
(e − e+(x)) dx.

If the body � is axially symmetric (around the z-axis), then Rcl lies along the z-axis. Since
we always assume this to be the case, we define the scalar

Rcl(�) = e · Rcl(�).

When multiplied by mv and by the number of incoming particles per unit area, Rcl equals
the total momentum transferred to �. At this point one can ask some interesting questions;
already Newton posed and solved the problem of minimizing Rcl in the class of axially
symmetric convex bodies inscribed in a fixed cylinder. Recently this problem has received
renewed attention [3, 7, 11].
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We will consider the quantum analogue of Rcl, the so-called transport cross section
(TCS), also called momentum-transfer cross section. Minimizing TCS with fixed total cross
section (CS), as would be the analogue of the classical Newton problem, is clearly far beyond
our possibilities, since for calculating TCS we have only some estimates [8] in the Born
approximation. In this paper we present an appealing formula for TCS in terms of phase
shifts. It is analogous to the well-known formula for CS. As an illustration, we apply this
formula in the case of a hard sphere.

Consider a quantum particle with wave vector k ≡ ke incident on the body � with
associated potential

V�(x) =
{

0 if x /∈ �,

+∞ if x ∈ �.
(1)

Basic scattering theory teaches us that the wavefunction � should satisfy the following
conditions: the Helmholtz equation:

−�� = k2�, (2)

the boundary condition:

�|∂� ≡ 0 (3)

and the Sommerfeld radiation criterion (let q ≡ r
|r| ∈ S2):

� = eikz +
f (q)

|r| eik|r| |r| → +∞. (4)

The function f (q) = f�(q, k) goes by the name of scattering amplitude. Now we can
introduce the quantum TCS:

σT = 1

k

∫
S2

k · (e − q)|f (q)|2dq, (5)

which yields the classical resistance if we substitute, with J (F−1(·)) being the Jacobian of the
map F−1,

|f (q)|2 = |fcl(q)|2 = |J (F−1(q))| F : R
2 → S2 : x → e+(x). (6)

In the classical case, Rcl depends solely on geometrical properties of �. In contrast, σT

depends in a non-trivial way on the wavenumber k.
A quantity which is very well documented in both the quantum and the classical case is

the total cross section (CS):

σ =
∫

S2
|f (q)|2 dq. (7)

In the classical case, one can view σ as measuring the number of particles colliding with the
target. In the quantum case, this interpretation of course breaks down (every incoming particle
interacts with the target), but it remains true that σ measures the intensity loss of the incident
beam. In general, σ depends on the wavenumber k, as shown in figure 1 for the hard sphere,
see [1].

Remark that both Rcl and σT have the dimensions of an area, just like the CS σ . It is
quite natural to replace the rigid body � by a general potential V (r). This means that one has
to replace (2), (3) with the stationary Schrödinger equation:

−�� + V � = k2�, (8)

which reduces to (2) for V as in (1). Expressions (5) and (7) are still meaningful for general
potentials V (r).
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2. Result

We restrict ourselves to the class of spherically symmetric potentials V (r) = V (|r|). Recall
that for these potentials f (q) = f (θ(q)) where θ ∈ [0, π ] is defined by

cos θ = e · q (9)

Theorem 1. Let the potential V (|r|) be such that the scattering amplitude can be expressed
as

f (θ) = 1

2ik

∞∑
l=0

(2l + 1)(e2iδl − 1)Pl(cos θ), (10)

where Pl are the Legendre polynomials, and δl, l = 0, 1, . . . , are (k-dependent) numbers,
called the phase shifts [5].

Then, we have

σT = 4π

k2

∞∑
l=1

l · sin2(δl − δl−1). (11)

Remark 1. In the mathematical literature, one defines the Rolnik class of potentials V ,
see [12, vol 2]. For this class one can rigorously prove expansion (10). In the physical
literature, one usually says that this expansion is generally valid for potentials falling off faster
than the Coulomb potential.

The formula for σT should be compared to the well-known formula for the total cross
section CR:

σ = 4π

k2

∞∑
l=0

(2l + 1) sin2 δl.

In the case of � being the hard sphere with radius r, the solution to (2)–(4) is explicitly known,
see e.g. [6]:

tan δl = jl(kr)

nl(kr)
, l � 0,

where jl, nl are respectively the spherical Bessel and the spherical Hankel functions. Plugging
this expression for δl in formula (11) and using sin2 δl = j 2

l (kr)/
(
j 2
l (kr) + n2

l (kr)
)

and
cos2 δl = n2

l (kr)
/(

j 2
l (kr) + n2

l (kr)
)
, we obtain

σT = 4π

k2

∞∑
l=1

l
(jl(kr)nl−1(kr) − jl−1(kr)nl(kr))2(

j 2
l−1(kr) + n2

l−1(kr)
) (

j 2
l (kr) + n2

l (kr)
) .

In figure 1, the dependence of respectively the CS and the TCS (both classical and
quantum) on the velocity k is shown. It is well known (i.e. [6]) that in the high-energy
limit, the quantum CS is twice the classical CS. Remark that however the quantum TCS and
classical resistance are equal in this limit. We see from the graph that for k = 0, we have
σT = σ . Indeed, at low energies, one has isotropic scattering. For positive k, the scattering is
anisotropic and in fact we have for all positive k, σT < σ , or, in other words∫

S2
cos θ |f (q)|2 dq > 0, cos θ = e · q,
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Figure 1. Transport cross section σT and classical resistance Rcl; total cross section σ and classical
total cross section σcl for the hard sphere with radius r = π−1/2.

which shows that there is more forward scattering than backscattering. The question to what
extent this is a general feature will be addressed in [4]. In fact, for smooth enough bodies �,

the correct high-energy behaviour [9, 4] of f (q) is given by (in the sense of distributions)

lim
k→+∞

|f |2 = |fcl|2 + σclδe, (12)

where δe is the Dirac delta distribution on the sphere, concentrated in e, fcl is the classical
scattering amplitude given in (6) and σcl is the total CS calculated from fcl. From formula
(12), one can immediately deduce that

lim
k→+∞

σ = 2σcl, lim
k→+∞

σT = Rcl.

3. Proof of theorem 1

We start from expression (10) and calculate

σT − σ = −2π

∫ 1

−1
d cos θ |f (θ)|2 cos θ. (13)

Using the recursion relation xPn(x) = n+1
2n+1Pn+1(x) + n

2n+1Pn−1(x) and the orthogonality of
the Legendre polynomials, we obtain that (13) equals

−2π

4k2

∫ 1

−1
d cos θ

∞∑
n=1

cos θPn(cos θ)Pn−1(cos θ)(2n + 1)(2n − 1)an,n−1, (14)

where

an,n−1 = (e2iδn − 1)(e−2iδn−1 − 1) + (e−2iδn − 1)(e2iδn−1 − 1)

= 2(cos 2(δn − δn−1) − cos 2δn − cos 2δn−1 + 1)

= 4(− sin2(δn − δn−1) + sin2 δn + sin2 δn−1). (15)

(14) equals

− π

2k2

∞∑
n=1

n

2n + 1
‖Pn−1‖2

L2[0,1](2n + 1)(2n − 1)an,n−1. (16)
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Using the normalization ‖Pn−1‖L2[0,1] = 2
2n−1 , we obtain that (16) equals

− π

2k2

∞∑
n=1

n

2n + 1

2

2n − 1
(2n + 1)(2n − 1)an,n−1 = − π

k2

∞∑
n=1

nan,n−1

= 4π

k2

∞∑
n=1

n sin2(δn − δn−1) − 4π

k2

∞∑
n=1

n sin2 δn − 4π

k2

∞∑
n=1

n sin2 δn−1. (17)

And we finally have

σT − σ = 4π

k2

∞∑
n=1

n sin2(δn − δn−1) − σ (18)

because

4π

k2

( ∞∑
n=1

n sin2 δn +
∞∑

n=1

n sin2 δn−1

)
= 4π

k2

( ∞∑
n=0

n sin2 δn +
∞∑

n=0

(n + 1) sin2 δn

)

= 4π

k2

∞∑
n=0

(2n + 1) sin2 δn = σ.

theorem 1 is proven.
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